{ "id": "1207.2748", "version": "v1", "published": "2012-07-11T19:13:08.000Z", "updated": "2012-07-11T19:13:08.000Z", "title": "On the number of Hamilton cycles in sparse random graphs", "authors": [ "R. Glebov", "M. Krivelevich" ], "comment": "18 pages", "categories": [ "math.CO", "math.PR" ], "abstract": "We prove that the number of Hamilton cycles in the random graph G(n,p) is n!p^n(1+o(1))^n a.a.s., provided that p\\geq (ln n+ln ln n+\\omega(1))/n. Furthermore, we prove the hitting-time version of this statement, showing that in the random graph process, the edge that creates a graph of minimum degree 2 creates (ln n/e)^n(1+o(1))^n Hamilton cycles a.a.s.", "revisions": [ { "version": "v1", "updated": "2012-07-11T19:13:08.000Z" } ], "analyses": { "subjects": [ "05C80", "05C45", "05D40", "05C20", "05C35" ], "keywords": [ "sparse random graphs", "hamilton cycles", "random graph process", "hitting-time version", "minimum degree" ], "note": { "typesetting": "TeX", "pages": 18, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1207.2748G" } } }