{ "id": "1207.2446", "version": "v1", "published": "2012-07-10T19:29:42.000Z", "updated": "2012-07-10T19:29:42.000Z", "title": "Macdonald Polynomials and BGG reciprocity for current algebras", "authors": [ "Matthew Bennett", "Arkady Berenstein", "Vyjayanthi Chari", "Anton Khoroshkin", "Sergey Loktev" ], "categories": [ "math.RT", "math.CO" ], "abstract": "We study the category of graded representations with finite--dimensional graded pieces for the current algebra associated to a simple Lie algebra. This category has many similarities with the category $\\cal O$ of modules for $\\lie g$ and in this paper, we use the combinatorics of Macdonald polynomials to prove an analogue of the famous BGG duality in the case of $\\lie{sl}_{n+1}$.", "revisions": [ { "version": "v1", "updated": "2012-07-10T19:29:42.000Z" } ], "analyses": { "keywords": [ "current algebra", "macdonald polynomials", "bgg reciprocity", "simple lie algebra", "finite-dimensional graded pieces" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1207.2446B" } } }