{ "id": "1207.2413", "version": "v2", "published": "2012-07-10T16:51:18.000Z", "updated": "2013-08-02T08:43:46.000Z", "title": "The unknotting number and classical invariants II", "authors": [ "Maciej Borodzik", "Stefan Friedl" ], "comment": "26 pages, one figure", "categories": [ "math.GT" ], "abstract": "In [BF12] the authors associated to a knot K an invariant n_R(K) which is defined using the Blanchfield form and which gives a lower bound on the unknotting number. In this paper we express n_R(K) in terms of Levine-Tristram signatures and nullities of K. In the proof we also show that the Blanchfield form with real coefficients is diagonalizable.", "revisions": [ { "version": "v2", "updated": "2013-08-02T08:43:46.000Z" } ], "analyses": { "keywords": [ "unknotting number", "classical invariants", "blanchfield form", "levine-tristram signatures", "lower bound" ], "note": { "typesetting": "TeX", "pages": 26, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1207.2413B" } } }