{ "id": "1207.2274", "version": "v6", "published": "2012-07-10T09:29:16.000Z", "updated": "2017-02-20T20:12:41.000Z", "title": "Critical points of master functions and integrable hierarchies", "authors": [ "Alexander Varchenko", "Daniel Wright" ], "comment": "Latex 42 pages, misprints corrected", "categories": [ "math.AG", "math.CO", "nlin.SI" ], "abstract": "We consider the population of critical points generated from the trivial critical point of the master function with no variables and associated with the trivial representation of the affine Lie algebra $\\hat{\\frak{sl}}_N$. We show that the critical points of this population define rational solutions of the equations of the mKdV hierarchy associated with $\\hat{\\frak{sl}}_N$. We also construct critical points from suitable $N$-tuples of tau-functions. The construction is based on a Wronskian identity for tau-functions. In particular, we construct critical points from suitable $N$-tuples of Schur polynomials and prove a Wronskian identity for Schur polynomials.", "revisions": [ { "version": "v5", "updated": "2013-05-24T02:32:26.000Z", "comment": "AmsLaTeX, 42 pages, misprints corrected", "journal": null, "doi": null }, { "version": "v6", "updated": "2017-02-20T20:12:41.000Z" } ], "analyses": { "keywords": [ "master function", "integrable hierarchies", "construct critical points", "schur polynomials", "wronskian identity" ], "note": { "typesetting": "LaTeX", "pages": 42, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1207.2274V" } } }