{ "id": "1207.2099", "version": "v3", "published": "2012-07-09T16:44:50.000Z", "updated": "2013-02-25T11:12:49.000Z", "title": "Schrödinger type propagators, pseudodifferential operators and modulation spaces", "authors": [ "Elena Cordero", "Anita Tabacco", "Patrik Wahlberg" ], "comment": "25 pages, 2 figures, to appear in J. London Math. Soc", "doi": "10.1112/jlms/jdt020", "categories": [ "math.FA", "math.AP" ], "abstract": "We prove continuity results for Fourier integral operators with symbols in modulation spaces, acting between modulation spaces. The phase functions belong to a class of nondegenerate generalized quadratic forms that includes Schr\\\"odinger propagators and pseudodifferential operators. As a byproduct we obtain a characterization of all exponents $p,q,r_1,r_2,t_1,t_2 \\in [1,\\infty]$ of modulation spaces such that a symbol in $M^{p,q}(\\mathbb R^{2d})$ gives a pseudodifferential operator that is continuous from $M^{r_1,r_2}(\\mathbb R^d)$ into $M^{t_1,t_2}(\\mathbb R^d)$.", "revisions": [ { "version": "v3", "updated": "2013-02-25T11:12:49.000Z" } ], "analyses": { "subjects": [ "35S30", "35S05", "42B35" ], "keywords": [ "modulation spaces", "schrödinger type propagators", "pseudodifferential operator", "fourier integral operators", "phase functions belong" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 25, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1207.2099C" } } }