{ "id": "1207.2085", "version": "v2", "published": "2012-07-09T15:53:05.000Z", "updated": "2013-05-24T23:47:23.000Z", "title": "Comparison theorems for Gromov-Witten invariants of smooth pairs and of degenerations", "authors": [ "Dan Abramovich", "Steffen Marcus", "Jonathan Wise" ], "comment": "42 pages. Some minor changes. To appear in Annales de l'Institut Fourier", "categories": [ "math.AG" ], "abstract": "We consider four approaches to relative Gromov-Witten theory and Gromov-Witten theory of degenerations: Jun Li's original approach, Bumsig Kim's logarithmic expansions, Abramovich-Fantechi's orbifold expansions, and a logarithmic theory without expansions due to Gross-Siebert and Abramovich-Chen. We exhibit morphisms relating these moduli spaces and prove that their virtual fundamental classes are compatible by pushforward through these morphisms. This implies that the Gromov-Witten invariants associated to all four of these theories are identical.", "revisions": [ { "version": "v2", "updated": "2013-05-24T23:47:23.000Z" } ], "analyses": { "subjects": [ "14N35", "14H10", "14D23", "14D06", "14A20" ], "keywords": [ "gromov-witten invariants", "comparison theorems", "smooth pairs", "degenerations", "bumsig kims logarithmic expansions" ], "note": { "typesetting": "TeX", "pages": 42, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1207.2085A" } } }