{ "id": "1207.1184", "version": "v2", "published": "2012-07-05T08:17:08.000Z", "updated": "2013-02-10T10:43:50.000Z", "title": "Exact solution of a Levy walk model for anomalous heat transport", "authors": [ "Abhishek Dhar", "Keiji Saito", "Bernard Derrida" ], "comment": "5 pages, 2 figures", "journal": "Phys. Rev. E 87, 010103(R) (2013)", "categories": [ "cond-mat.stat-mech" ], "abstract": "The Levy walk model is studied in the context of the anomalous heat conduction of one dimensional systems. In this model the heat carriers execute Levy-walks instead of normal diffusion as expected in systems where Fourier's law holds. Here we calculate exactly the average heat current, the large deviation function of its fluctuations and the temperature profile of the Levy-walk model maintained in a steady state by contact with two heat baths (the open geometry). We find that the current is non-locally connected to the temperature gradient. As observed in recent simulations of mechanical models, all the cumulants of the current fluctuations have the same system-size dependence in the open geometry. For the ring geometry, we argue that a size dependent cut-off time is necessary for the Levy walk model to behave as mechanical models. This modification does not affect the results on transport in the open geometry for large enough system sizes.", "revisions": [ { "version": "v2", "updated": "2013-02-10T10:43:50.000Z" } ], "analyses": { "subjects": [ "05.40.Fb", "05.60.Cd", "44.10.+i" ], "keywords": [ "levy walk model", "anomalous heat transport", "exact solution", "open geometry", "heat carriers execute levy-walks" ], "tags": [ "journal article" ], "publication": { "publisher": "APS", "journal": "Physical Review E", "doi": "10.1103/PhysRevE.87.010103", "year": 2013, "month": "Jan", "volume": 87, "number": 1, "pages": "010103" }, "note": { "typesetting": "TeX", "pages": 5, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013PhRvE..87a0103D" } } }