{ "id": "1207.0975", "version": "v2", "published": "2012-07-04T13:30:58.000Z", "updated": "2013-01-03T08:58:47.000Z", "title": "Can you compute the operator norm?", "authors": [ "Tobias Fritz", "Tim Netzer", "Andreas Thom" ], "comment": "15 pages, no figures; v2 is a slightly revised version", "categories": [ "math.FA", "math.GR" ], "abstract": "In this note we address various algorithmic problems that arise in the computation of the operator norm in unitary representations of a group on Hilbert space. We show that the operator norm in the universal unitary representation is computable if the group is residually finite-dimensional or amenable with decidable word problem. Moreover, we relate the computability of the operator norm on the product of non-abelian free groups to Kirchberg's QWEP Conjecture, a fundamental open problem in the theory of operator algebras.", "revisions": [ { "version": "v2", "updated": "2013-01-03T08:58:47.000Z" } ], "analyses": { "subjects": [ "43A20" ], "keywords": [ "operator norm", "fundamental open problem", "kirchbergs qwep conjecture", "universal unitary representation", "non-abelian free groups" ], "note": { "typesetting": "TeX", "pages": 15, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1207.0975F" } } }