{ "id": "1207.0569", "version": "v3", "published": "2012-07-03T04:11:41.000Z", "updated": "2013-07-02T07:59:42.000Z", "title": "Congruences of models of elliptic curves", "authors": [ "Qing Liu", "Huajun Lu" ], "comment": "Minor changes.To appear in J. London Math. Soc", "journal": "J. London Math. Soc, 88 (2013), 899-924", "doi": "10.1112/jlms/jdt049", "categories": [ "math.AG", "math.NT" ], "abstract": "Let O_K be a discrete valuation ring with field of fractions K and perfect residue field. Let E be an elliptic curve over K, let L/K be a finite Galois extension and let O_L be the integral closure of O_K in L. Denote by X' the minimal regular model of E_L over O_L. We show that the special fibers of the minimal Weierstrass model and the minimal regular model of E over O_K are determined by the infinitesimal fiber X'_m together with the action of Gal(L/K), when m is big enough (depending on the minimal discriminant of E and the different of L/K).", "revisions": [ { "version": "v3", "updated": "2013-07-02T07:59:42.000Z" } ], "analyses": { "subjects": [ "11G07", "14G20", "14G40", "11G20" ], "keywords": [ "elliptic curve", "minimal regular model", "congruences", "minimal weierstrass model", "perfect residue field" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1207.0569L" } } }