{ "id": "1207.0404", "version": "v6", "published": "2012-06-29T13:16:35.000Z", "updated": "2014-07-31T07:54:50.000Z", "title": "Tangent power sums and their applications", "authors": [ "Vladimir Shevelev", "Peter J. C. Moses" ], "comment": "14 pages. Addition of reference: A.M. and I.M. Yaglom (1953)", "categories": [ "math.NT" ], "abstract": "For integer $m, p,$ we study tangent power sum $\\sum^m_{k=1}\\tan^{2p}\\frac{\\pi k}{2m+1}.$ We prove that, for every $m, p,$ it is integer, and, for a fixed p, it is a polynomial in $m$ of degree $2p.$ We give recurrent, asymptotical and explicit formulas for these polynomials and indicate their connections with Newman's digit sums in base $2m.$", "revisions": [ { "version": "v6", "updated": "2014-07-31T07:54:50.000Z" } ], "analyses": { "subjects": [ "11A63" ], "keywords": [ "applications", "study tangent power sum", "newmans digit sums", "polynomial", "explicit formulas" ], "note": { "typesetting": "TeX", "pages": 14, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1207.0404S" } } }