{ "id": "1207.0125", "version": "v2", "published": "2012-06-30T19:03:30.000Z", "updated": "2012-10-19T19:32:37.000Z", "title": "On the Distribution of Critical Points of a Polynomial", "authors": [ "Sneha Dey Subramanian" ], "categories": [ "math.PR" ], "abstract": "This paper proves that if points $Z_1,Z_2,...$ are chosen independently and identically using some measure $\\mu$ from the unit circle in the complex plane, with $p_n(z) = (z-Z_1)(z-Z_2)...(z-Z_n)$, then the empirical distribution of the critical points of $p_n$ converges weakly to $\\mu$.", "revisions": [ { "version": "v2", "updated": "2012-10-19T19:32:37.000Z" } ], "analyses": { "keywords": [ "critical points", "polynomial", "unit circle", "complex plane" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1207.0125D" } } }