{ "id": "1206.6721", "version": "v2", "published": "2012-06-28T15:09:16.000Z", "updated": "2013-01-04T14:13:32.000Z", "title": "Quasi-Likelihood and/or Robust Estimation in High Dimensions", "authors": [ "Sara van de Geer", "Patric Müller" ], "comment": "Published in at http://dx.doi.org/10.1214/12-STS397 the Statistical Science (http://www.imstat.org/sts/) by the Institute of Mathematical Statistics (http://www.imstat.org)", "journal": "Statistical Science 2012, Vol. 27, No. 4, 469-480", "doi": "10.1214/12-STS397", "categories": [ "math.ST", "stat.ME", "stat.TH" ], "abstract": "We consider the theory for the high-dimensional generalized linear model with the Lasso. After a short review on theoretical results in literature, we present an extension of the oracle results to the case of quasi-likelihood loss. We prove bounds for the prediction error and $\\ell_1$-error. The results are derived under fourth moment conditions on the error distribution. The case of robust loss is also given. We moreover show that under an irrepresentable condition, the $\\ell_1$-penalized quasi-likelihood estimator has no false positives.", "revisions": [ { "version": "v2", "updated": "2013-01-04T14:13:32.000Z" } ], "analyses": { "keywords": [ "robust estimation", "high dimensions", "high-dimensional generalized linear model", "fourth moment conditions", "penalized quasi-likelihood estimator" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1206.6721V" } } }