{ "id": "1206.6667", "version": "v1", "published": "2012-06-28T12:56:18.000Z", "updated": "2012-06-28T12:56:18.000Z", "title": "On the connectivity of the Julia sets of meromorphic functions", "authors": [ "Krzysztof Baranski", "Nuria Fagella", "Xavier Jarque", "Boguslawa Karpinska" ], "comment": "34 pages, 10 figures", "doi": "10.1007/s00222-014-0504-5", "categories": [ "math.DS" ], "abstract": "We prove that every transcendental meromorphic map f with a disconnected Julia set has a weakly repelling fixed point. This implies that the Julia set of Newton's method for finding zeroes of an entire map is connected. Moreover, extending a result of Cowen for holomorphic self-maps of the disc, we show the existence of absorbing domains for holomorphic self-maps of hyperbolic regions whose iterates tend to a boundary point. In particular, the results imply that periodic Baker domains of Newton's method for entire maps are simply connected, which solves a well-known open question.", "revisions": [ { "version": "v1", "updated": "2012-06-28T12:56:18.000Z" } ], "analyses": { "keywords": [ "julia set", "meromorphic functions", "entire map", "newtons method", "connectivity" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 34, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1206.6667B" } } }