{ "id": "1206.6638", "version": "v2", "published": "2012-06-28T11:10:44.000Z", "updated": "2012-07-02T13:40:13.000Z", "title": "Normal generation of locally compact groups", "authors": [ "Amichai Eisenmann", "Nicolas Monod" ], "comment": "4 pages (added an example)", "journal": "Bull. London Math. Soc. 45 No. 4 (2013), 734-738", "doi": "10.1112/blms/bdt009", "categories": [ "math.GR" ], "abstract": "It is a well-known open problem since the 1970s whether a finitely generated perfect group can be normally generated by a single element or not. We prove that the topological version of this problem has an affirmative answer as long as we exclude infinite discrete quotients (which is probably a necessary restriction).", "revisions": [ { "version": "v2", "updated": "2012-07-02T13:40:13.000Z" } ], "analyses": { "keywords": [ "locally compact groups", "normal generation", "exclude infinite discrete quotients", "well-known open problem", "finitely generated perfect group" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 4, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1206.6638E" } } }