{ "id": "1206.6553", "version": "v1", "published": "2012-06-28T03:14:17.000Z", "updated": "2012-06-28T03:14:17.000Z", "title": "Equality of uniform and Carleman spectra for bounded measurable functions", "authors": [ "Bolis Basit", "Alan J. Pryde" ], "comment": "20 pages", "categories": [ "math.FA" ], "abstract": "In this paper we study various types of spectra of functions $\\phi:\\jj\\to X$, where $\\jj\\in\\{\\r_+,\\r\\}$ and $X$ is a complex Banach space. We show that uniform spectrum defined in [15] coincides with Carleman spectrum for $\\phi\\in L^{\\infty}(\\r,X)$. This result holds true also for Laplace (half-line) spectrum for $\\phi\\in L^{\\infty}(\\r_+,X)$. We also indicate a class of bounded measurable functions for which Laplace spectrum and Carleman spectrum are equal", "revisions": [ { "version": "v1", "updated": "2012-06-28T03:14:17.000Z" } ], "analyses": { "subjects": [ "47D03", "47A10", "40D05", "43A60" ], "keywords": [ "bounded measurable functions", "carleman spectrum", "complex banach space", "result holds true", "laplace spectrum" ], "note": { "typesetting": "TeX", "pages": 20, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1206.6553B" } } }