{ "id": "1206.6340", "version": "v1", "published": "2012-06-27T17:14:50.000Z", "updated": "2012-06-27T17:14:50.000Z", "title": "On extendability of permutations", "authors": [ "Mark Pankov" ], "categories": [ "math.GR", "math.CO", "math.RT" ], "abstract": "Let $V$ be a left vector space over a division ring and let ${\\mathcal P}(V)$ be the associated projective space. We describe all finite subsets $X\\subset V$ such that every permutation on $X$ can be extended to a linear automorphism of $V$ and all finite subsets ${\\mathcal X}\\subset {\\mathcal P}(V)$ such that every permutation on ${\\mathcal X}$ can be extended to an element of ${\\rm PGL}(V)$. Also, we reformulate the results in terms of linear and projective representations of symmetric groups.", "revisions": [ { "version": "v1", "updated": "2012-06-27T17:14:50.000Z" } ], "analyses": { "keywords": [ "permutation", "extendability", "finite subsets", "left vector space", "symmetric groups" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1206.6340P" } } }