{ "id": "1206.6233", "version": "v1", "published": "2012-06-27T11:30:50.000Z", "updated": "2012-06-27T11:30:50.000Z", "title": "Boundedness of the extremal solutions in dimension 4", "authors": [ "Salvador Villegas" ], "comment": "9 pages", "categories": [ "math.AP" ], "abstract": "In this paper we establish the boundedness of the extremal solution u^* in dimension N=4 of the semilinear elliptic equation $-\\Delta u=\\lambda f(u)$, in a general smooth bounded domain Omega of R^N, with Dirichlet data $u|_{\\partial \\Omega}=0$, where f is a C^1 positive, nondecreasing and convex function in [0,\\infty) such that $f(s)/s\\rightarrow\\infty$ as $s\\rightarrow\\infty$. In addition, we prove that, for N>=5, the extremal solution $u^*\\in W^{2,\\frac{N}{N-2}}$. This gives $u^\\ast\\in L^\\frac{N}{N-4}$, if N>=5 and $u^*\\in H_0^1$, if N=6.", "revisions": [ { "version": "v1", "updated": "2012-06-27T11:30:50.000Z" } ], "analyses": { "keywords": [ "extremal solution", "boundedness", "general smooth bounded domain omega", "semilinear elliptic equation", "dirichlet data" ], "note": { "typesetting": "TeX", "pages": 9, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1206.6233V" } } }