{ "id": "1206.6160", "version": "v6", "published": "2012-06-27T02:57:32.000Z", "updated": "2012-08-21T05:33:15.000Z", "title": "Restricted Sumsets in Finite Nilpotent Groups", "authors": [ "Shanshan Du", "Hao Pan" ], "comment": "This is a preliminary draft, which maybe contains some mistakes. Now Theorem 1.2 has been extended to general finite groups", "categories": [ "math.CO", "math.GR", "math.NT" ], "abstract": "Suppose that $A,B$ are two non-empty subsets of the finite nilpotent group $G$. If $A\\not=B$, then the cardinality of the restricted sumset $$A\\dotplus B={a+b: a\\in A, b\\in B, a\\neq b} $$ is at least $$\\min{p(G),|A|+|B|-2},$$ where $p(G)$ denotes the least prime factor of $|G|$.", "revisions": [ { "version": "v6", "updated": "2012-08-21T05:33:15.000Z" } ], "analyses": { "keywords": [ "finite nilpotent group", "restricted sumset", "non-empty subsets", "prime factor" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1206.6160D" } } }