{ "id": "1206.6089", "version": "v1", "published": "2012-06-26T19:20:02.000Z", "updated": "2012-06-26T19:20:02.000Z", "title": "Increasing powers in a degenerate parabolic logistic equation", "authors": [ "José Francisco Rodrigues", "Hugo Tavares" ], "comment": "15 pages", "categories": [ "math.AP" ], "abstract": "The purpose of this paper is to study the asymptotic behavior of the positive solutions of the problem $$ \\partial_t u-\\Delta u=a u-b(x) u^p \\text{in} \\Omega\\times \\R^+, u(0)=u_0, u(t)|_{\\partial \\Omega}=0 $$ as $p\\to +\\infty$, where $\\Omega$ is a bounded domain and $b(x)$ is a nonnegative function. We deduce that the limiting configuration solves a parabolic obstacle problem, and afterwards we fully describe its long time behavior.", "revisions": [ { "version": "v1", "updated": "2012-06-26T19:20:02.000Z" } ], "analyses": { "subjects": [ "35B40", "35B09", "35K91" ], "keywords": [ "degenerate parabolic logistic equation", "increasing powers", "long time behavior", "parabolic obstacle problem", "asymptotic behavior" ], "note": { "typesetting": "TeX", "pages": 15, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1206.6089F" } } }