{ "id": "1206.5931", "version": "v1", "published": "2012-06-26T09:20:39.000Z", "updated": "2012-06-26T09:20:39.000Z", "title": "Equivalence of the Poincaré inequality with a transport-chi-square inequality in dimension one", "authors": [ "Benjamin Jourdain" ], "categories": [ "math.PR" ], "abstract": "In this paper, we prove that, in dimension one, the Poincar\\'e inequality is equivalent to a new transport-chi-square inequality linking the square of the quadratic Wasserstein distance with the chi-square pseudo-distance. We also check tensorization of this transport-chi-square inequality.", "revisions": [ { "version": "v1", "updated": "2012-06-26T09:20:39.000Z" } ], "analyses": { "keywords": [ "equivalence", "quadratic wasserstein distance", "poincare inequality", "chi-square pseudo-distance", "check tensorization" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1206.5931J" } } }