{ "id": "1206.5592", "version": "v3", "published": "2012-06-25T07:16:00.000Z", "updated": "2014-12-30T17:01:59.000Z", "title": "On the Commuting variety of a reductive Lie algebra", "authors": [ "Jean-Yves Charbonnel" ], "comment": "A proof is completed", "categories": [ "math.RT", "math.AG" ], "abstract": "The commuting variety of a reductive Lie algebra ${\\goth g}$ is the underlying variety of a well defined subscheme of $\\gg g{}$. In this note, it is proved that this scheme is normal. In particular, its ideal of definition is a prime ideal.", "revisions": [ { "version": "v2", "updated": "2012-11-01T20:31:03.000Z", "comment": "Few corrections", "journal": null, "doi": null }, { "version": "v3", "updated": "2014-12-30T17:01:59.000Z" } ], "analyses": { "keywords": [ "reductive lie algebra", "commuting variety", "prime ideal", "defined subscheme" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1206.5592C" } } }