{ "id": "1206.5437", "version": "v1", "published": "2012-06-23T20:44:45.000Z", "updated": "2012-06-23T20:44:45.000Z", "title": "On the S^1 x S^2 HOMFLY-PT invariant and Legendrian links", "authors": [ "Mikhail Lavrov", "Dan Rutherford" ], "comment": "20 pages, 8 figures", "categories": [ "math.GT" ], "abstract": "In \\cite{GZ}, Gilmer and Zhong established the existence of an invariant for links in $S^1\\times S^2$ which is a rational function in variables $a$ and $s$ and satisfies the HOMFLY-PT skein relations. We give formulas for evaluating this invariant in terms of a standard, geometrically simple basis for the HOMFLY-PT skein module of the solid torus. This allows computation of the invariant for arbitrary links in $S^1\\times S^2$ and shows that the invariant is in fact a Laurent polynomial in $a$ and $z= s -s^{-1}$. Our proof uses connections between HOMFLY-PT skein modules and invariants of Legendrian links. As a corollary, we extend HOMFLY-PT polynomial estimates for the Thurston-Bennequin number to Legendrian links in $S^1\\times S^2$ with its tight contact structure.", "revisions": [ { "version": "v1", "updated": "2012-06-23T20:44:45.000Z" } ], "analyses": { "keywords": [ "legendrian links", "homfly-pt invariant", "homfly-pt skein module", "extend homfly-pt polynomial estimates", "homfly-pt skein relations" ], "note": { "typesetting": "TeX", "pages": 20, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1206.5437L" } } }