{ "id": "1206.5415", "version": "v2", "published": "2012-06-23T17:10:11.000Z", "updated": "2015-03-06T11:51:06.000Z", "title": "On fractional smoothness and $L_p$-approximation on the Gaussian space", "authors": [ "Stefan Geiss", "Anni Toivola" ], "comment": "Published in at http://dx.doi.org/10.1214/13-AOP884 the Annals of Probability (http://www.imstat.org/aop/) by the Institute of Mathematical Statistics (http://www.imstat.org)", "journal": "Annals of Probability 2015, Vol. 43, No. 2, 605-638", "doi": "10.1214/13-AOP884", "categories": [ "math.PR" ], "abstract": "We consider Gaussian Besov spaces obtained by real interpolation and Riemann-Liouville operators of fractional integration on the Gaussian space and relate the fractional smoothness of a functional to the regularity of its heat extension. The results are applied to study an approximation problem in $L_p$ for $2\\le p<\\infty$ for stochastic integrals with respect to the $d$-dimensional (geometric) Brownian motion.", "revisions": [ { "version": "v1", "updated": "2012-06-23T17:10:11.000Z", "title": "On fractional smoothness and $L_p$-approximation on the Wiener space", "abstract": "We consider stochastic integral representations of $g(Y_1)$ with respect to a process $Y$, where $Y$ is the $d$-dimensional Brownian motion or the coordinate-wise geometric Brownian motion. For $2\\le p < \\infty$, we relate the $L_p$-norm of the discretization error of Riemann approximations of this integral to the Besov regularity of $g(Y_1)$ in the Malliavin sense and to the $L_p$-integrability of a Riemann-Liouville type operator.", "comment": null, "journal": null, "doi": null }, { "version": "v2", "updated": "2015-03-06T11:51:06.000Z" } ], "analyses": { "subjects": [ "60H05", "60H07", "41A25", "46B70" ], "keywords": [ "wiener space", "fractional smoothness", "stochastic integral representations", "coordinate-wise geometric brownian motion", "riemann-liouville type operator" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1206.5415G" } } }