{ "id": "1206.5329", "version": "v1", "published": "2012-06-22T21:59:44.000Z", "updated": "2012-06-22T21:59:44.000Z", "title": "Nonlinear stabilitty for steady vortex pairs", "authors": [ "Geoffrey R. Burton", "Milton C. Lopes Filho", "Helena J. Nussenzveig Lopes" ], "comment": "25 pages", "journal": "Comm. Math. Phys. 324 (2013) 445-463", "categories": [ "math.AP", "physics.flu-dyn" ], "abstract": "In this article, we prove nonlinear orbital stability for steadily translating vortex pairs, a family of nonlinear waves that are exact solutions of the incompressible, two-dimensional Euler equations. We use an adaptation of Kelvin's variational principle, maximizing kinetic energy penalised by a multiple of momentum among mirror-symmetric isovortical rearrangements. This formulation has the advantage that the functional to be maximized and the constraint set are both invariant under the flow of the time-dependent Euler equations, and this observation is used strongly in the analysis. Previous work on existence yields a wide class of examples to which our result applies.", "revisions": [ { "version": "v1", "updated": "2012-06-22T21:59:44.000Z" } ], "analyses": { "subjects": [ "76B47", "35Q31" ], "keywords": [ "steady vortex pairs", "nonlinear stabilitty", "two-dimensional euler equations", "kelvins variational principle", "time-dependent euler equations" ], "tags": [ "journal article" ], "publication": { "publisher": "Springer", "journal": "Communications in Mathematical Physics", "doi": "10.1007/s00220-013-1806-y", "year": 2013, "month": "Dec", "volume": 324, "number": 2, "pages": 445 }, "note": { "typesetting": "TeX", "pages": 25, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013CMaPh.324..445B" } } }