{ "id": "1206.4911", "version": "v2", "published": "2012-06-21T15:19:40.000Z", "updated": "2012-06-24T15:21:19.000Z", "title": "Refinements of Mitrinović-Cusa inequality", "authors": [ "Zhen-Hang Yang" ], "comment": "13 pages", "categories": [ "math.CA" ], "abstract": "The Mitrinovi\\'c-Cusa inequality states that for x\\in(0,{\\pi}/2) (cos x)^{1/3}<((sin x)/x)<((2+cos x)/3) hold. In this paper, we prove that (cos x)^{1/3}<(cos px)^{1/(3p^{2})}<((sin x)/x)<(cos qx)^{1/(3q^{2})}<((2+cos x)/3) hold for x\\in(0,{\\pi}/2) if and only if p\\in[p_{1},1) and q\\in(0,1/\\surd5], where p_{1}=0.45346830977067.... And the function p\\mapsto(cos px)^{1/(3p^{2})} is decreasing on (0,1]. Our results greatly refine the Mitrinovi\\'c-Cusa inequality.", "revisions": [ { "version": "v2", "updated": "2012-06-24T15:21:19.000Z" } ], "analyses": { "subjects": [ "26D05", "26D15", "26A48", "33F05" ], "keywords": [ "mitrinović-cusa inequality", "refinements", "mitrinovic-cusa inequality states", "results greatly refine" ], "note": { "typesetting": "TeX", "pages": 13, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1206.4911Y" } } }