{ "id": "1206.4341", "version": "v2", "published": "2012-06-19T21:10:32.000Z", "updated": "2013-01-22T09:30:57.000Z", "title": "On the pure critical exponent problem for the $p$-Laplacian", "authors": [ "Carlo Mercuri", "Filomena Pacella" ], "comment": "18 pages", "categories": [ "math.AP" ], "abstract": "In this paper we prove existence and multiplicity of positive and sign-changing solutions to the pure critical exponent problem for the $p$-Laplacian operator with Dirichlet boundary conditions on a bounded domain having nontrivial topology and discrete symmetry. Pioneering works related to the case $p=2$ are H. Brezis and L. Nirenberg [4], J.-M. Coron [10], and A. Bahri and J.-M. Coron [3]. A global compactness analysis is given for the Palais-Smale sequences in the presence of symmetries.", "revisions": [ { "version": "v2", "updated": "2013-01-22T09:30:57.000Z" } ], "analyses": { "subjects": [ "35J20", "35J66", "35J92" ], "keywords": [ "pure critical exponent problem", "dirichlet boundary conditions", "global compactness analysis", "palais-smale sequences", "nontrivial topology" ], "note": { "typesetting": "TeX", "pages": 18, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1206.4341M" } } }