{ "id": "1206.4174", "version": "v1", "published": "2012-06-19T10:39:15.000Z", "updated": "2012-06-19T10:39:15.000Z", "title": "Generalized Fibonacci and Lucas Numbers of the form $5x^{2}$", "authors": [ "Refik Keskin", "Olcay Karaatlı" ], "categories": [ "math.NT" ], "abstract": "Let $(U_{n}(P,Q) $ and $(V_{n}(P,Q) $ denote the generalized Fibonacci and Lucas sequence, respectively. In this study, we assume that $Q=1.$ We determine all indices $n$ such that $U_{n}=5\\square $ and $U_{n}=5U_{m}\\square $ under some assumptions on $P.$ We show that the equation $V_{n}=5\\square $ has the solution only if $n=1$ for the case when $% P$ is odd. Moreover, we show that the equation $V_{n}=5V_{m}\\square $ has no solutions.", "revisions": [ { "version": "v1", "updated": "2012-06-19T10:39:15.000Z" } ], "analyses": { "subjects": [ "11B37", "11B39", "11A07" ], "keywords": [ "generalized fibonacci", "lucas numbers", "lucas sequence", "assumptions" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1206.4174K" } } }