{ "id": "1206.3649", "version": "v3", "published": "2012-06-16T09:17:49.000Z", "updated": "2013-12-25T15:58:18.000Z", "title": "A Maximum Principle for Optimal Control of Stochastic Evolution Equations", "authors": [ "Kai Du", "Qingxin Meng" ], "comment": "20 pages", "categories": [ "math.OC" ], "abstract": "A general maximum principle is proved for optimal controls of abstract semilinear stochastic evolution equations. The control variable, as well as linear unbounded operators, acts in both drift and diffusion terms, and the control set need not be convex.", "revisions": [ { "version": "v3", "updated": "2013-12-25T15:58:18.000Z" } ], "analyses": { "subjects": [ "49K27", "93E20", "60H25" ], "keywords": [ "optimal control", "abstract semilinear stochastic evolution equations", "general maximum principle", "linear unbounded operators", "diffusion terms" ], "note": { "typesetting": "TeX", "pages": 20, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1206.3649D" } } }