{ "id": "1206.2885", "version": "v2", "published": "2012-06-13T17:57:59.000Z", "updated": "2014-07-03T16:24:55.000Z", "title": "A Probabilistic Threshold for Monochromatic Arithmetic Progressions", "authors": [ "Aaron Robertson" ], "categories": [ "math.CO" ], "abstract": "We show that $\\sqrt{k}\\cdot r^{k/2}$ is a threshold interval length where, under mild conditions, almost every $r$-coloring of an interval of longer length contains a monochromatic $k$-term arithmetic progression, while almost no $r$-coloring of an interval of shorter length contains a monochromatic $k$-term arithmetic progression.", "revisions": [ { "version": "v2", "updated": "2014-07-03T16:24:55.000Z" } ], "analyses": { "subjects": [ "05D10" ], "keywords": [ "monochromatic arithmetic progressions", "probabilistic threshold", "term arithmetic progression", "threshold interval length", "shorter length contains" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1206.2885R" } } }