{ "id": "1206.2767", "version": "v2", "published": "2012-06-13T11:02:48.000Z", "updated": "2013-04-04T14:21:44.000Z", "title": "Control Theorems for l-adic Lie extensions of global function fields", "authors": [ "Andrea Bandini", "Maria Valentino" ], "comment": "21 pages, revised arguments in sections 2 and 4", "categories": [ "math.NT" ], "abstract": "Let F be a global function field of characteristic p>0, K/F an l-adic Lie extension unramified outside a finite set of places S and A/F an abelian variety without complex multiplication. We study Sel_A(K)_l^\\vee (the Pontrjagin dual of the Selmer group) and (under some mild hypotheses) prove that it is a finitely generated Z_l[[\\Gal(K/F)]]-module via generalizations of Mazur's Control Theorem. If Gal(K/F) has no elements of order l and contains a closed normal subgroup H such that Gal(K/F)/H\\simeq Z_l, we are able to give sufficient conditions for Sel_A(K)_l^\\vee to be finitely generated as Z_l[[H]]-module and, consequently, a torsion Z_l[[\\Gal(K/F)]]-module. We deal with both cases l\\neq p and l=p.", "revisions": [ { "version": "v2", "updated": "2013-04-04T14:21:44.000Z" } ], "analyses": { "keywords": [ "global function field", "l-adic lie extension unramified outside", "mazurs control theorem", "finite set", "abelian variety" ], "note": { "typesetting": "TeX", "pages": 21, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1206.2767B" } } }