{ "id": "1206.2521", "version": "v1", "published": "2012-06-12T13:28:51.000Z", "updated": "2012-06-12T13:28:51.000Z", "title": "HOMFLY-PT skein module of singular links in the three-sphere", "authors": [ "Luis Paris", "Emmanuel Wagner" ], "categories": [ "math.GT" ], "abstract": "For a ring $R$, we denote by $R[\\mathcal L]$ the free $R$-module spanned by the isotopy classes of singular links in $\\mathbb S^3$. Given two invertible elements $x,t \\in R$, the HOMFLY-PT skein module of singular links in $\\mathbb S^3$ (relative to the triple $(R,t,x)$) is the quotient of $R[\\mathcal L]$ by local relations, called skein relations, that involve $t$ and $x$. We compute the HOMFLY-PT skein module of singular links for any $R$ such that $(t^{-1}-t+x)$ and $(t^{-1}-t-x)$ are invertible. In particular, we deduce the Conway skein module of singular links.", "revisions": [ { "version": "v1", "updated": "2012-06-12T13:28:51.000Z" } ], "analyses": { "keywords": [ "homfly-pt skein module", "singular links", "three-sphere", "conway skein module", "isotopy classes" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1206.2521P" } } }