{ "id": "1206.2489", "version": "v1", "published": "2012-06-12T11:14:52.000Z", "updated": "2012-06-12T11:14:52.000Z", "title": "A simple proof of the sharp weighted estimate for Calderon-Zygmund operators on homogeneous spaces", "authors": [ "Theresa C. Anderson", "Armen Vagharshakyan" ], "categories": [ "math.CA" ], "abstract": "Here we show that Lerner's method of local mean oscillation gives a simple proof of the $A_2$ conjecture for spaces of homogeneous type: that is, the linear dependence on the $A_2$ norm for weighted $L^2$ Calderon-Zygmund operator estimates. In the Euclidean case, the result is due to Hyt\\\"{o}nen, and for geometrically doubling spaces, Nazarov, Rezinikov, and Volberg obtained the linear bound.", "revisions": [ { "version": "v1", "updated": "2012-06-12T11:14:52.000Z" } ], "analyses": { "subjects": [ "42B20" ], "keywords": [ "sharp weighted estimate", "simple proof", "homogeneous spaces", "local mean oscillation", "calderon-zygmund operator estimates" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1206.2489A" } } }