{ "id": "1206.2260", "version": "v1", "published": "2012-06-11T15:39:04.000Z", "updated": "2012-06-11T15:39:04.000Z", "title": "Flows on Simplicial Complexes", "authors": [ "Matthias Beck", "Yvonne Kemper" ], "comment": "10 pages, to appear in Discrete Mathematics and Theoretical Computer Science (proceedings of FPSAC'12)", "journal": "Discrete Mathematics & Theoretical Computer Science Proc. AR (2012), 817-826 (Proceedings of FPSAC'12)", "categories": [ "math.CO" ], "abstract": "Given a graph $G$, the number of nowhere-zero $\\ZZ_q$-flows $\\phi_G(q)$ is known to be a polynomial in $q$. We extend the definition of nowhere-zero $\\ZZ_q$-flows to simplicial complexes $\\Delta$ of dimension greater than one, and prove the polynomiality of the corresponding function $\\phi_{\\Delta}(q)$ for certain $q$ and certain subclasses of simplicial complexes.", "revisions": [ { "version": "v1", "updated": "2012-06-11T15:39:04.000Z" } ], "analyses": { "subjects": [ "05E45", "05C21" ], "keywords": [ "simplicial complexes", "nowhere-zero", "dimension greater", "subclasses" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 10, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1206.2260B" } } }