{ "id": "1206.1613", "version": "v1", "published": "2012-06-07T20:56:27.000Z", "updated": "2012-06-07T20:56:27.000Z", "title": "Average Number of Lattice Points in a Disk", "authors": [ "Sujay Jayakar", "Robert S. Strichartz" ], "comment": "11 pages, 12 figures", "categories": [ "math.FA" ], "abstract": "The difference between the number of lattice points in a disk of radius $\\sqrt{t}/2\\pi$ and the area of the disk $t/4\\pi$ is equal to the error in the Weyl asymptotic estimate for the eigenvalue counting function of the Laplacian on the standard flat torus. We give a sharp asymptotic expression for the average value of the difference over the interval $0 \\leq t \\leq R$. We obtain similar results for families of ellipses. We also obtain relations to the eigenvalue counting function for the Klein bottle and projective plane.", "revisions": [ { "version": "v1", "updated": "2012-06-07T20:56:27.000Z" } ], "analyses": { "subjects": [ "35J05", "42B99" ], "keywords": [ "lattice points", "average number", "eigenvalue counting function", "weyl asymptotic estimate", "standard flat torus" ], "note": { "typesetting": "TeX", "pages": 11, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1206.1613J" } } }