{ "id": "1206.1349", "version": "v1", "published": "2012-06-06T21:16:26.000Z", "updated": "2012-06-06T21:16:26.000Z", "title": "Symmetry results for the $p(x)$-Laplacian equation", "authors": [ "Luigi Montoro", "Berardino Sciunzi", "Marco Squassina" ], "comment": "13 pages", "categories": [ "math.AP" ], "abstract": "We consider the Dirichlet problem for the nonlinear $p(x)$-Laplacian equation. For axially symmetric domains we prove that, under suitable assumptions, there exist Mountain-pass solutions which exhibit partial symmetry. Furthermore, we show that Semi-stable or non-degenerate smooth solutions need to be radially symmetric in the ball.", "revisions": [ { "version": "v1", "updated": "2012-06-06T21:16:26.000Z" } ], "analyses": { "subjects": [ "30E25", "35B07", "58E05", "35J92" ], "keywords": [ "laplacian equation", "symmetry results", "dirichlet problem", "mountain-pass solutions", "partial symmetry" ], "note": { "typesetting": "TeX", "pages": 13, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1206.1349M" } } }