{ "id": "1206.0185", "version": "v1", "published": "2012-06-01T13:51:05.000Z", "updated": "2012-06-01T13:51:05.000Z", "title": "On partially conjugate-permutable subgroups of finite groups", "authors": [ "V. I. Murashka", "A. F. Vasil'ev" ], "categories": [ "math.GR" ], "abstract": "Let $R$ be a subset of a group $G$. We call a subgroup $H$ of $G$ the $R$-conjugate-permutable subgroup of $G$, if $HH^{x}=H^{x}H$ for all $x\\in R$. This concept is a generalization of conjugate-permutable subgroups introduced by T. Foguel. Our work focuses on the influence of $R$-conjugate-permutable subgroups on the structure of finite groups in case when $R$ is the Fitting subgroup or its generalizations $F^{*}(G)$ (introduced by H. Bender in 1970) and $\\tilde{F}(G)$ (introduced by P. Shmid 1972). We obtain a new criteria for nilpotency and supersolubility of finite groups which generalize some well known results.", "revisions": [ { "version": "v1", "updated": "2012-06-01T13:51:05.000Z" } ], "analyses": { "keywords": [ "finite groups", "partially conjugate-permutable subgroups", "generalization", "work focuses", "fitting subgroup" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1206.0185M" } } }