{ "id": "1205.7022", "version": "v1", "published": "2012-05-31T15:43:24.000Z", "updated": "2012-05-31T15:43:24.000Z", "title": "Rates of convergence in the strong invariance principle for non adapted sequences. Application to ergodic automorphisms of the torus", "authors": [ "J. Dedecker", "F. Merlevède", "F. Pène" ], "comment": "21 pages", "categories": [ "math.PR" ], "abstract": "In this paper, we give rates of convergence in the strong invariance principle for non-adapted sequences satisfying projective criteria. The results apply to the iterates of ergodic automorphisms T of the d-dimensional torus, even in the non hyperbolic case. In this context, we give a large class of unbounded functions f from the d-dimensional torus to R, for which the partial sum foT+ foT^2 + ... + foT^n satisfies a strong invariance principle with an explicit rate of convergence.", "revisions": [ { "version": "v1", "updated": "2012-05-31T15:43:24.000Z" } ], "analyses": { "subjects": [ "60F17", "37D30" ], "keywords": [ "strong invariance principle", "non adapted sequences", "ergodic automorphisms", "convergence", "sequences satisfying projective criteria" ], "note": { "typesetting": "TeX", "pages": 21, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1205.7022D" } } }