{ "id": "1205.6916", "version": "v2", "published": "2012-05-31T08:32:44.000Z", "updated": "2012-10-16T11:42:53.000Z", "title": "On Variants of CM-triviality", "authors": [ "Thomas Blossier", "Amador Martin-Pizarro", "Frank Olaf Wagner" ], "categories": [ "math.LO" ], "abstract": "We introduce a generalization of CM-triviality relative to a fixed invariant collection of partial types, in analogy to the Canonical Base Property defined by Pillay, Ziegler and Chatzidakis which generalizes one-basedness. We show that, under this condition, a stable field is internal to the family, and a group of finite Lascar rank has a normal nilpotent subgroup such that the quotient is almost internal to the family.", "revisions": [ { "version": "v2", "updated": "2012-10-16T11:42:53.000Z" } ], "analyses": { "keywords": [ "cm-triviality", "finite lascar rank", "normal nilpotent subgroup", "canonical base property", "fixed invariant collection" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1205.6916B" } } }