{ "id": "1205.6780", "version": "v1", "published": "2012-05-30T19:15:36.000Z", "updated": "2012-05-30T19:15:36.000Z", "title": "Analysis of a Mixture Model of Tumor Growth", "authors": [ "John Lowengrub", "Edriss S. Titi", "Kun Zhao" ], "categories": [ "math.AP", "nlin.PS", "physics.bio-ph", "q-bio.QM" ], "abstract": "We study an initial-boundary value problem (IBVP) for a coupled Cahn-Hilliard-Hele-Shaw system that models tumor growth. For large initial data with finite energy, we prove global (local resp.) existence, uniqueness, higher order spatial regularity and Gevrey spatial regularity of strong solutions to the IBVP in 2D (3D resp.). Asymptotically in time, we show that the solution converges to a constant state exponentially fast as time tends to infinity under certain assumptions.", "revisions": [ { "version": "v1", "updated": "2012-05-30T19:15:36.000Z" } ], "analyses": { "subjects": [ "35Q35", "35B65", "35B40" ], "keywords": [ "mixture model", "higher order spatial regularity", "models tumor growth", "large initial data", "initial-boundary value problem" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1205.6780L" } } }