{ "id": "1205.6422", "version": "v1", "published": "2012-05-29T17:10:09.000Z", "updated": "2012-05-29T17:10:09.000Z", "title": "A pseudocompactification", "authors": [ "M. R. Koushesh" ], "comment": "8 pages", "journal": "Topology Appl. 158 (2011), 2191-2197", "categories": [ "math.GN" ], "abstract": "For a locally pseudocompact space $X$ let [\\zeta X=X\\cup cl_{\\beta X}(\\beta X\\backslash\\upsilon X).] It is proved that $\\zeta X$ is the largest (with respect to the standard partial order $\\leq$) among all pseudocompactifications of $X$ which have compact remainder. Other characterizations of $\\zeta X$ are also given.", "revisions": [ { "version": "v1", "updated": "2012-05-29T17:10:09.000Z" } ], "analyses": { "subjects": [ "54D35", "54D40", "54D60" ], "keywords": [ "pseudocompactification", "standard partial order", "locally pseudocompact space", "compact remainder" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 8, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1205.6422K" } } }