{ "id": "1205.5093", "version": "v1", "published": "2012-05-23T05:08:56.000Z", "updated": "2012-05-23T05:08:56.000Z", "title": "Classification of rotations on the torus $\\mathbb{T}^2$", "authors": [ "Nicolas Bédaride" ], "comment": "18 pages, 4 figures", "journal": "Theoretical Computer science. 2007, volume 385, issues 1-3, pages 214-225", "categories": [ "math.DS", "math.CO" ], "abstract": "We consider rotations on the torus $\\mathbb{T}^2$, and we classify them with respect to the complexity functions. In dimension one, a minimal rotation can be coded by a sturmian word. A sturmian word has complexity $n+1$ by the Morse-Hedlund theorem. Here we make a generalization in dimension two.", "revisions": [ { "version": "v1", "updated": "2012-05-23T05:08:56.000Z" } ], "analyses": { "keywords": [ "classification", "sturmian word", "complexity functions", "minimal rotation" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 18, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1205.5093B" } } }