{ "id": "1205.5021", "version": "v1", "published": "2012-05-22T19:47:19.000Z", "updated": "2012-05-22T19:47:19.000Z", "title": "3-tuples have at most 7 prime factors infinitely often", "authors": [ "James Maynard" ], "comment": "13 Pages", "categories": [ "math.NT" ], "abstract": "Let $L_1$, $L_2$ $L_3$ be integer linear functions with no fixed prime divisor. We show there are infinitely many $n$ for which the product $L_1(n)L_2(n)L_3(n)$ has at most 7 prime factors, improving a result of Porter. We do this by means of a weighted sieve based upon the Diamond-Halberstam-Richert multidimensional sieve.", "revisions": [ { "version": "v1", "updated": "2012-05-22T19:47:19.000Z" } ], "analyses": { "subjects": [ "11N05", "11N35", "11N36" ], "keywords": [ "prime factors", "diamond-halberstam-richert multidimensional sieve", "integer linear functions", "fixed prime divisor" ], "publication": { "doi": "10.1017/S0305004113000339", "journal": "Mathematical Proceedings of the Cambridge Philosophical Society", "year": 2013, "month": "Nov", "volume": 155, "number": 3, "pages": 443 }, "note": { "typesetting": "TeX", "pages": 13, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013MPCPS.155..443M" } } }