{ "id": "1205.4866", "version": "v1", "published": "2012-05-22T10:12:42.000Z", "updated": "2012-05-22T10:12:42.000Z", "title": "Uniform oscillatory behavior of spherical functions of $GL_n/U_n$ at the identity and a central limit theorem", "authors": [ "Michael Voit" ], "categories": [ "math.CA", "math.PR" ], "abstract": "Let $\\mathbb F=\\mathbb R$ or $\\mathbb C$ and $n\\in\\b N$. Let $(S_k)_{k\\ge0}$ be a time-homogeneous random walk on $GL_n(\\b F)$ associated with an $U_n(\\b F)$-biinvariant measure $\\nu\\in M^1(GL_n(\\b F))$. We derive a central limit theorem for the ordered singular spectrum $\\sigma_{sing}(S_k)$ with a normal distribution as limit with explicit analytic formulas for the drift vector and the covariance matrix. The main ingredient for the proof will be a oscillatory result for the spherical functions $\\phi_{i\\rho+\\lambda}$ of $(GL_n(\\b F),U_n(\\b F))$. More precisely, we present a necessarily unique mapping $m_{\\bf 1}:G\\to\\b R^n$ such that for some constant $C$ and all $g\\in G$, $\\lambda\\in\\b R^n$, $$|\\phi_{i\\rho+\\lambda}(g)- e^{i\\lambda\\cdot m_{\\bf 1}(g)}|\\le C\\|\\lambda\\|^2.$$", "revisions": [ { "version": "v1", "updated": "2012-05-22T10:12:42.000Z" } ], "analyses": { "subjects": [ "43A90", "33C67", "22E46", "60B15", "60F05", "43A62" ], "keywords": [ "central limit theorem", "uniform oscillatory behavior", "spherical functions", "explicit analytic formulas", "ordered singular spectrum" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1205.4866V" } } }