{ "id": "1205.4610", "version": "v1", "published": "2012-05-21T14:20:46.000Z", "updated": "2012-05-21T14:20:46.000Z", "title": "Almost-prime $k$-tuples", "authors": [ "James Maynard" ], "comment": "26 pages", "categories": [ "math.NT" ], "abstract": "Let $k\\ge 2$ and $\\Pi(n)=\\prod_{i=1}^k(a_in+b_i)$ for some integers $a_i, b_i$ ($1\\le i\\le k$). Suppose that $\\Pi(n)$ has no fixed prime divisors. Weighted sieves have shown for infinitely many integers $n$ that $\\Omega(\\Pi(n))\\le r_k$ holds for some integer $r_k$ which is asymptotic to $k\\log{k}$. We use a new kind of weighted sieve to improve the possible values of $r_k$ when $k\\ge 4$.", "revisions": [ { "version": "v1", "updated": "2012-05-21T14:20:46.000Z" } ], "analyses": { "subjects": [ "11N36", "11N05", "11N35" ], "keywords": [ "almost-prime", "weighted sieve", "fixed prime divisors" ], "note": { "typesetting": "TeX", "pages": 26, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1205.4610M" } } }