{ "id": "1205.4507", "version": "v1", "published": "2012-05-21T07:38:59.000Z", "updated": "2012-05-21T07:38:59.000Z", "title": "Global existence of strong solutions to micropolar equations in cylindrical domains", "authors": [ "B. Nowakowski" ], "categories": [ "math.AP" ], "abstract": "The micropolar equations are a useful generalization of the classical Navier-Stokes model for fluids with micro-structure. We prove the existence of global and strong solutions to these equations in cylindrical domains in $\\mathbb{R}^3$. We do not impose any restrictions on the magnitude of the initial and external data but we require that they cannot change in the $x_3$-direction too fast.", "revisions": [ { "version": "v1", "updated": "2012-05-21T07:38:59.000Z" } ], "analyses": { "subjects": [ "35Q30", "76D05" ], "keywords": [ "micropolar equations", "strong solutions", "cylindrical domains", "global existence", "external data" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1205.4507N" } } }