{ "id": "1205.4172", "version": "v2", "published": "2012-05-18T15:07:26.000Z", "updated": "2013-10-21T06:52:58.000Z", "title": "Variance of partial sums of stationary sequences", "authors": [ "George Deligiannidis", "Sergey Utev" ], "comment": "Published in at http://dx.doi.org/10.1214/12-AOP772 the Annals of Probability (http://www.imstat.org/aop/) by the Institute of Mathematical Statistics (http://www.imstat.org)", "journal": "Annals of Probability 2013, Vol. 41, No. 5, 3606-3616", "doi": "10.1214/12-AOP772", "categories": [ "math.PR" ], "abstract": "Let $X_1,X_2,\\ldots$ be a centred sequence of weakly stationary random variables with spectral measure $F$ and partial sums $S_n=X_1+\\cdots+X_n$. We show that $\\operatorname {var}(S_n)$ is regularly varying of index $\\gamma$ at infinity, if and only if $G(x):=\\int_{-x}^xF(\\mathrm {d}x)$ is regularly varying of index $2-\\gamma$ at the origin ($0<\\gamma<2$).", "revisions": [ { "version": "v2", "updated": "2013-10-21T06:52:58.000Z" } ], "analyses": { "keywords": [ "partial sums", "stationary sequences", "weakly stationary random variables", "spectral measure", "regularly varying" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1205.4172D" } } }