{ "id": "1205.3937", "version": "v4", "published": "2012-05-17T14:19:47.000Z", "updated": "2012-08-03T13:30:52.000Z", "title": "Improved bounds on the set A(A+1)", "authors": [ "Timothy G. F. Jones", "Oliver Roche-Newton" ], "categories": [ "math.CO" ], "abstract": "For a subset A of a field F, write A(A + 1) for the set {a(b + 1):a,b\\in A}. We establish new estimates on the size of A(A+1) in the case where F is either a finite field of prime order, or the real line. In the finite field case we show that A(A+1) is of cardinality at least C|A|^{57/56-o(1)} for some absolute constant C, so long as |A| < p^{1/2}. In the real case we show that the cardinality is at least C|A|^{24/19-o(1)}. These improve on the previously best-known exponents of 106/105-o(1) and 5/4 respectively.", "revisions": [ { "version": "v4", "updated": "2012-08-03T13:30:52.000Z" } ], "analyses": { "keywords": [ "finite field case", "best-known exponents", "real line", "cardinality", "prime order" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1205.3937J" } } }