{ "id": "1205.2542", "version": "v2", "published": "2012-05-11T14:52:20.000Z", "updated": "2013-02-16T19:11:41.000Z", "title": "On weak$^*$-convergence in $H^1_L(\\mathbb R^d)$", "authors": [ "Luong Dang Ky" ], "comment": "Potential Anal. (to appear)", "categories": [ "math.CA", "math.FA" ], "abstract": "Let $L= -\\Delta+ V$ be a Schr\\\"odinger operator on $\\mathbb R^d$, $d\\geq 3$, where $V$ is a nonnegative function, $V\\ne 0$, and belongs to the reverse H\\\"older class $RH_{d/2}$. In this paper, we prove a version of the classical theorem of Jones and Journ\\'e on weak$^*$-convergence in the Hardy space $H^1_L(\\mathbb R^d)$.", "revisions": [ { "version": "v2", "updated": "2013-02-16T19:11:41.000Z" } ], "analyses": { "subjects": [ "42B35", "46E15" ], "keywords": [ "convergence", "hardy space", "nonnegative function", "classical theorem" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1205.2542D" } } }