{ "id": "1205.2525", "version": "v2", "published": "2012-05-11T13:57:44.000Z", "updated": "2012-05-21T02:37:12.000Z", "title": "Sobolev Extension By Linear Operators", "authors": [ "Charles L. Fefferman", "Arie Israel", "Garving K. Luli" ], "comment": "98 pages", "categories": [ "math.CA" ], "abstract": "Let $L^{m,p}(\\R^n)$ be the Sobolev space of functions with $m^{th}$ derivatives lying in $L^p(\\R^n)$. Assume that $n< p < \\infty$. For $E \\subset \\R^n$, let $L^{m,p}(E)$ denote the space of restrictions to $E$ of functions in $L^{m,p}(\\R^n)$. We show that there exists a bounded linear map $T : L^{m,p}(E) \\rightarrow L^{m,p}(\\R^n)$ such that, for any $f \\in L^{m,p}(E)$, we have $Tf = f$ on $E$. We also give a formula for the order of magnitude of $\\|f\\|_{L^{m,p}(E)}$ for a given $f : E \\rightarrow \\R$ when $E$ is finite.", "revisions": [ { "version": "v2", "updated": "2012-05-21T02:37:12.000Z" } ], "analyses": { "subjects": [ "42B99" ], "keywords": [ "linear operators", "sobolev extension", "bounded linear map", "sobolev space", "restrictions" ], "note": { "typesetting": "TeX", "pages": 98, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1205.2525F" } } }