{ "id": "1205.2161", "version": "v1", "published": "2012-05-10T05:24:14.000Z", "updated": "2012-05-10T05:24:14.000Z", "title": "On the higher derivatives of Z(t) associated with the Riemann Zeta-Function", "authors": [ "Kaneaki Matsuoka" ], "comment": "18 pages", "categories": [ "math.NT" ], "abstract": "Let $Z(t)$ be the classical Hardy function in the theory of the Riemann zeta-function. The main result in this paper is that if the Riemann hypothesis is true then for any positive integer $n$ there exists a $t_{n}>0$ such that for $t>t_{n}$ the function $Z^{(n+1)}(t)$ has exactly one zero between consecutive zeros of $Z^{(n)}(t)$.", "revisions": [ { "version": "v1", "updated": "2012-05-10T05:24:14.000Z" } ], "analyses": { "subjects": [ "11M06" ], "keywords": [ "riemann zeta-function", "higher derivatives", "main result", "riemann hypothesis" ], "note": { "typesetting": "TeX", "pages": 18, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1205.2161M" } } }